active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))
↳ QTRS
↳ DependencyPairsProof
active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))
ACTIVE1(f3(x, y, z)) -> ACTIVE1(z)
PROPER1(f3(x, y, z)) -> PROPER1(x)
TOP1(mark1(x)) -> PROPER1(x)
PROPER1(f3(x, y, z)) -> PROPER1(z)
TOP1(ok1(x)) -> ACTIVE1(x)
ACTIVE1(f3(x, y, z)) -> F3(x, y, active1(z))
ACTIVE1(f3(b, c, x)) -> F3(x, x, x)
TOP1(ok1(x)) -> TOP1(active1(x))
TOP1(mark1(x)) -> TOP1(proper1(x))
PROPER1(f3(x, y, z)) -> PROPER1(y)
PROPER1(f3(x, y, z)) -> F3(proper1(x), proper1(y), proper1(z))
F3(x, y, mark1(z)) -> F3(x, y, z)
F3(ok1(x), ok1(y), ok1(z)) -> F3(x, y, z)
active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVE1(f3(x, y, z)) -> ACTIVE1(z)
PROPER1(f3(x, y, z)) -> PROPER1(x)
TOP1(mark1(x)) -> PROPER1(x)
PROPER1(f3(x, y, z)) -> PROPER1(z)
TOP1(ok1(x)) -> ACTIVE1(x)
ACTIVE1(f3(x, y, z)) -> F3(x, y, active1(z))
ACTIVE1(f3(b, c, x)) -> F3(x, x, x)
TOP1(ok1(x)) -> TOP1(active1(x))
TOP1(mark1(x)) -> TOP1(proper1(x))
PROPER1(f3(x, y, z)) -> PROPER1(y)
PROPER1(f3(x, y, z)) -> F3(proper1(x), proper1(y), proper1(z))
F3(x, y, mark1(z)) -> F3(x, y, z)
F3(ok1(x), ok1(y), ok1(z)) -> F3(x, y, z)
active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
F3(x, y, mark1(z)) -> F3(x, y, z)
F3(ok1(x), ok1(y), ok1(z)) -> F3(x, y, z)
active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F3(x, y, mark1(z)) -> F3(x, y, z)
Used ordering: Polynomial Order [17,21] with Interpretation:
F3(ok1(x), ok1(y), ok1(z)) -> F3(x, y, z)
POL( F3(x1, ..., x3) ) = x3
POL( mark1(x1) ) = x1 + 1
POL( ok1(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
F3(ok1(x), ok1(y), ok1(z)) -> F3(x, y, z)
active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F3(ok1(x), ok1(y), ok1(z)) -> F3(x, y, z)
POL( F3(x1, ..., x3) ) = x3
POL( ok1(x1) ) = x1 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PROPER1(f3(x, y, z)) -> PROPER1(x)
PROPER1(f3(x, y, z)) -> PROPER1(z)
PROPER1(f3(x, y, z)) -> PROPER1(y)
active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROPER1(f3(x, y, z)) -> PROPER1(x)
PROPER1(f3(x, y, z)) -> PROPER1(z)
PROPER1(f3(x, y, z)) -> PROPER1(y)
POL( PROPER1(x1) ) = x1
POL( f3(x1, ..., x3) ) = x1 + x2 + x3 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE1(f3(x, y, z)) -> ACTIVE1(z)
active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE1(f3(x, y, z)) -> ACTIVE1(z)
POL( ACTIVE1(x1) ) = x1
POL( f3(x1, ..., x3) ) = x3 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
TOP1(ok1(x)) -> TOP1(active1(x))
TOP1(mark1(x)) -> TOP1(proper1(x))
active1(f3(b, c, x)) -> mark1(f3(x, x, x))
active1(f3(x, y, z)) -> f3(x, y, active1(z))
active1(d) -> m1(b)
f3(x, y, mark1(z)) -> mark1(f3(x, y, z))
active1(d) -> mark1(c)
proper1(b) -> ok1(b)
proper1(c) -> ok1(c)
proper1(d) -> ok1(d)
proper1(f3(x, y, z)) -> f3(proper1(x), proper1(y), proper1(z))
f3(ok1(x), ok1(y), ok1(z)) -> ok1(f3(x, y, z))
top1(mark1(x)) -> top1(proper1(x))
top1(ok1(x)) -> top1(active1(x))